### What is wrong with rote learning?

The Victorian curriculum seems to be built on one of two assumptions: either people do not have memories, or else their memories need to be left unused. To my knowledge, the students are never asked to memorise poems or mathematical definitions.

A year level coordinator once told me about an English teacher who made the students repeat a poem until they could recite it by heart. That took place during an excursion. When they were back at school, many students commented that they had never realised one could remember something if one repeated it over and over! These were 15 year olds who had not developed strategies for memorisation. I once read about Western hostages in Beirut, and how they kept themselves sane by reciting their favourite poems.

The other day I was describing a project on the Pythagorean Theorem to my nephew, a French educated 17-year old from the middle east. I first asked him if he knew the theorem. He thought for a couple of seconds and said: "Dans un triangle carré, Le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés" (In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides).

Did the fact that he knew it by heart mean that he understood little of it? Not at all. It gave him the necessary vocabulary to describe his understanding. As we walked on, I described the geometric proofs that my students had to describe as part of their project. He had never seen those proofs before, but we could discuss them abstractly, without having the pictures in front of us. I could use words like "somme" (sum), "surface" (area) and "longueur" (length), with which he was entirely comfortable.

I then mentioned the concept of a proof by induction, something taught in the first year of a science degree at a typical Australian university. He said, "yes, I know what that is. Induction is the opposite of deduction in that you begin with a particular case and generalise. In deduction, you apply a general rule to a particular case."

Let me temper all this by stating that I am not a "back to basics" teacher. I teach algorithms and shortcuts only when absolutely necessary. I do believe that mathematics needs a context, and that understanding is paramount. My complaint is that we seem to have thrown the baby out with the bath water. We often speak as though learning by rote is a poor alternative to learning with understanding. I think that we can use some rote learning to support understanding. Let me know what you think.

Elias.

Categories: Education

A year level coordinator once told me about an English teacher who made the students repeat a poem until they could recite it by heart. That took place during an excursion. When they were back at school, many students commented that they had never realised one could remember something if one repeated it over and over! These were 15 year olds who had not developed strategies for memorisation. I once read about Western hostages in Beirut, and how they kept themselves sane by reciting their favourite poems.

The other day I was describing a project on the Pythagorean Theorem to my nephew, a French educated 17-year old from the middle east. I first asked him if he knew the theorem. He thought for a couple of seconds and said: "Dans un triangle carré, Le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés" (In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides).

Did the fact that he knew it by heart mean that he understood little of it? Not at all. It gave him the necessary vocabulary to describe his understanding. As we walked on, I described the geometric proofs that my students had to describe as part of their project. He had never seen those proofs before, but we could discuss them abstractly, without having the pictures in front of us. I could use words like "somme" (sum), "surface" (area) and "longueur" (length), with which he was entirely comfortable.

I then mentioned the concept of a proof by induction, something taught in the first year of a science degree at a typical Australian university. He said, "yes, I know what that is. Induction is the opposite of deduction in that you begin with a particular case and generalise. In deduction, you apply a general rule to a particular case."

Let me temper all this by stating that I am not a "back to basics" teacher. I teach algorithms and shortcuts only when absolutely necessary. I do believe that mathematics needs a context, and that understanding is paramount. My complaint is that we seem to have thrown the baby out with the bath water. We often speak as though learning by rote is a poor alternative to learning with understanding. I think that we can use some rote learning to support understanding. Let me know what you think.

Elias.

Categories: Education

## Comments

In combination, there is powerful learning to be had!

Here here, Elias!

Elias.

To learn another language, students first need to manipulate individual sounds and words in that language with only a limited understanding of those elements. This is how we all learn to speak our languages.

And to learn to fluency requires, in my opinion, a far greater focus on "mindless" manipulation of words and ideas than it does a focus on objective, deep understanding of the language.

Elias.

This is just one example. Most people come to understand something by relating it to things they're already familiar with. To build up a stock of familiar facts and concepts, you need good grounding and practice in "the basics".